4755 (FP1) Further Concepts for Advanced Mathematics

Qu	Answer	Mark	Comment
Section A			
1(i)	$\mathbf{B A}=\left(\begin{array}{cc} 3 & 1 \\ -2 & 4 \end{array}\right)\left(\begin{array}{cc} 2 & -1 \\ 0 & 3 \end{array}\right)=\left(\begin{array}{cc} 6 & 0 \\ -4 & 14 \end{array}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	Attempt to multiply c.a.o.
1(ii)	$\begin{aligned} & \operatorname{det} \mathbf{B A}=(6 \times 14)-(-4 \times 0)=84 \\ & 3 \times 84=252 \text { square units } \end{aligned}$	M1 A1 A1 (ft) [3]	Attempt to calculate any determinant c.a.o. Correct area
2(i)2(ii)	$\alpha^{2}=(-3+4 \mathrm{j})(-3+4 \mathrm{j})=(-7-24 \mathrm{j})$	M1 A1 [2]	Attempt to multiply with use of $\mathrm{j}^{2}=-1$ c.a.o.
	$\|\alpha\|=5$ $\arg \alpha=\pi-\arctan \frac{4}{3}=2.21$ (2d.p.) (or $\left.126.87^{\circ}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept 2.2 or 127°
	$\alpha=5(\cos 2.21+\mathrm{j} \sin 2.21)$	$\mathrm{B} 1(\mathrm{ft})$ [3]	Accept degrees and (r, θ) form s.c. lose 1 mark only if α^{2} used throughout (ii)
3(i)	$\begin{aligned} & 3^{3}+3^{2}-7 \times 3-15=0 \\ & z^{3}+z^{2}-7 z-15=(z-3)\left(z^{2}+4 z+5\right) \\ & z=\frac{-4 \pm \sqrt{16-20}}{2}=-2 \pm \mathrm{j} \end{aligned}$ So other roots are $-2+\mathrm{j}$ and $-2-\mathrm{j}$	B1 M1 A1	Showing 3 satisfies the equation (may be implied) Valid attempt to factorise Correct quadratic factor
		M1	Use of quadratic formula, or other valid method
		A1 [5]	One mark for both c.a.o.
3(ii)		B2 [2]	Minus 1 for each error ft provided conjugate imaginary roots

4	$\begin{aligned} & \sum_{r=1}^{n}[(r+1)(r-2)]=\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r-2 n \\ & =\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)-2 n \\ & =\frac{1}{6} n[(n+1)(2 n+1)-3(n+1)-12] \\ & =\frac{1}{6} n\left(2 n^{2}+3 n+1-3 n-3-12\right) \\ & =\frac{1}{6} n\left(2 n^{2}-14\right) \\ & =\frac{1}{3} n\left(n^{2}-7\right) \end{aligned}$	M1 A2 M1 M1 A1 [6]	Attempt to split sum up Minus one each error Attempt to factorise Collecting terms All correct
	$p=-3, r=7$ $q=\alpha \beta+\alpha \gamma+\beta \gamma$ $\begin{aligned} & \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\ & =(\alpha+\beta+\gamma)^{2}-2 q \\ & \Rightarrow 13=3^{2}-2 q \\ & \Rightarrow q=-2 \end{aligned}$	B2 [2] B1 M1 A1 [3]	One mark for each s.c. B1 if b and d used instead of p and r Attempt to find q using $\alpha^{2}+\beta^{2}+\gamma^{2}$ and $\alpha+\beta+\gamma$, but not $\alpha \beta \gamma$ c.a.o.
6(i)	$\begin{aligned} & a_{2}=7 \times 7-3=46 \\ & a_{3}=7 \times 46-3=319 \end{aligned}$		Use of inductive definition c.a.o.
6(ii)	When $n=1, \frac{13 \times 7^{0}+1}{2}=7$, so true for $n=1$ Assume true for $n=k$ $\begin{aligned} & a_{k}=\frac{13 \times 7^{k-1}+1}{2} \\ & \Rightarrow a_{k+1}=7 \times \frac{13 \times 7^{k-1}+1}{2}-3 \\ & =\frac{13 \times 7^{k}+7}{2}-3 \\ & =\frac{13 \times 7^{k}+7-6}{2} \\ & =\frac{13 \times 7^{k}+1}{2} \end{aligned}$ But this is the given result with $k+1$ replacing k. Therefore if it is true for k it is true for $k+1$. Since it is true for $k=1$, it is true for $k=1,2,3$ and so true for all positive integers.	B1 E1 M1 A1 E1 E1 [6]	Correct use of part (i) (may be implied) Assuming true for k Attempt to use $a_{k+1}=7 a_{k}-3$ Correct simplification Dependent on A1 and previous E1 Dependent on B1 and previous E1

